Coupled Bulk-Surface Free Boundary Problems Arising from a Mathematical Model of Receptor-Ligand Dynamics

نویسندگان

  • Charles M. Elliott
  • Thomas Ranner
  • Chandrasekhar Venkataraman
چکیده

We consider a coupled bulk-surface system of partial differential equations with nonlinear coupling modeling receptor-ligand dynamics. The model arises as a simplification of a mathematical model for the reaction between cell surface resident receptors and ligands present in the extracellular medium. We prove the existence and uniqueness of solutions. We also consider a number of biologically relevant asymptotic limits of the model. We prove convergence to limiting problems which take the form of free boundary problems posed on the cell surface. We also report on numerical simulations illustrating convergence to one of the limiting problems as well as the spatiotemporal distributions of the receptors and ligands in a realistic geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploration of the Significance of Autocatalytic Chemical Reaction and Cattaneo-Christov Heat Flux on the Dynamics of a Micropolar Fluid

During the homogeneous-heterogeneous autocatalytic chemical reaction in the dynamics of micropolar fluid, relaxation of heat transfer is inevitable; hence Cattaneo-Christov heat flux model is investigated in this report. In this study, radiative heat flux through an optically thick medium is treated as nonlinear due to the fact that thermal radiation at low heat energy is distinctly different f...

متن کامل

Stability analysis and simulations of coupled bulk-surface reaction–diffusion systems

In this article, we formulate new models for coupled systems of bulk-surface reaction-diffusion equations on stationary volumes. The bulk reaction-diffusion equations are coupled to the surface reaction-diffusion equations through linear Robin-type boundary conditions. We then state and prove the necessary conditions for diffusion-driven instability for the coupled system. Owing to the nature o...

متن کامل

Geometric Partial Differential Equations: Surface and Bulk Processes

The workshop brought together experts representing a wide range of topics in geometric partial differential equations ranging from analyis over numerical simulation to real-life applications. The main themes of the conference were the analysis of curvature energies, new developments in pdes on surfaces and the treatment of coupled bulk/surface problems. Mathematics Subject Classification (2010)...

متن کامل

A Numerical Improvement in Analyzing the Dynamic Characteristics of an Electrostatically Actuated Micro-beam in Fluid Loading with Free Boundary Approach

Electrostatically actuated microbeams have been studied by many researchers in the last few years. The aim of this study is to present an improved numerical analysis of the dynamic instability of a cantilever microbeam immersed in an incompressible viscous fluid. The finite element method is used for solving the vibrational equation of the microbeam and the potential functions of the fluids in ...

متن کامل

Chebyshev finite difference method for solving a mathematical model arising in wastewater treatment plants

The Chebyshev finite difference method is applied to solve a system of two coupled nonlinear Lane-Emden differential equations arising in mathematical modelling of the excess sludge production from wastewater treatment plants. This method is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. The approach consists of reducing the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2017